55 research outputs found

    MTOR cross-talk in cancer and potential for combination therapy

    Get PDF
    The mammalian Target of Rapamycin (mTOR) pathway plays an essential role in sensing and integrating a variety of exogenous cues to regulate cellular growth and metabolism, in both physiological and pathological conditions. mTOR functions through two functionally and structurally distinct multi-component complexes, mTORC1 and mTORC2, which interact with each other and with several elements of other signaling pathways. In the past few years, many new insights into mTOR function and regulation have been gained and extensive genetic and pharmacological studies in mice have enhanced our understanding of how mTOR dysfunction contributes to several diseases, including cancer. Single-agent mTOR targeting, mostly using rapalogs, has so far met limited clinical success; however, due to the extensive cross-talk between mTOR and other pathways, combined approaches are the most promising avenues to improve clinical efficacy of available therapeutics and overcome drug resistance. This review provides a brief and up-to-date narrative on the regulation of mTOR function, the relative contributions of mTORC1 and mTORC2 complexes to cancer development and progression, and prospects for mTOR inhibition as a therapeutic strategy

    Role of mTOR signaling in tumor microenvironment. An overview

    Get PDF
    The mammalian target of rapamycin (mTOR) pathway regulates major processes by integrating a variety of exogenous cues, including diverse environmental inputs in the tumor microenvironment (TME). In recent years, it has been well recognized that cancer cells co-exist and co-evolve with their TME, which is often involved in drug resistance. The mTOR pathway modulates the interactions between the stroma and the tumor, thereby affecting both the tumor immunity and angiogenesis. The activation of mTOR signaling is associated with these pro-oncogenic cellular processes, making mTOR a promising target for new combination therapies. This review highlights the role of mTOR signaling in the characterization and the activity of the TME’s elements and their implications in cancer immunotherapy

    PTEN as a Prognostic/Predictive Biomarker in Cancer: An Unfulfilled Promise?

    Get PDF
    Abstract Identifying putative biomarkers of clinical outcomes in cancer is crucial for successful enrichment, and for the selection of patients who are the most likely to benefit from a specific therapeutic approach. Indeed, current research in personalized cancer therapy focuses on the possibility of identifying biomarkers that predict prognosis, sensitivity or resistance to therapies. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that regulates several crucial cell functions such as proliferation, survival, genomic stability and cell motility through both enzymatic and non-enzymatic activities and phosphatidylinositol 3-kinase (PI3K)-dependent and -independent mechanisms. Despite its undisputed role as a tumor suppressor, assessment of PTEN status in sporadic human tumors has yet to provide clinically robust prognostic, predictive or therapeutic information. This is possibly due to the exceptionally complex regulation of PTEN function, which involves genetic, transcriptional, post-transcriptional and post-translational events. This review shows a brief summary of the regulation and function of PTEN and discusses its controversial aspects as a prognostic/predictive biomarker

    The Key Roles of PTEN in T-Cell Acute Lymphoblastic Leukemia Development, Progression, and Therapeutic Response

    Get PDF
    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer that comprises 10–15% of pediatric and ~25% of adult ALL cases. Although the curative rates have significantly improved over the past 10 years, especially in pediatric patients, T-ALL remains a challenge from a therapeutic point of view, due to the high number of early relapses that are for the most part resistant to further treatment. Considerable advances in the understanding of the genes, signaling networks, and mechanisms that play crucial roles in the pathobiology of T-ALL have led to the identification of the key drivers of the disease, thereby paving the way for new therapeutic approaches. PTEN is critical to prevent the malignant transformation of T-cells. However, its expression and functions are altered in human T-ALL. PTEN is frequently deleted or mutated, while PTEN protein is often phosphorylated and functionally inactivated by casein kinase 2. Different murine knockout models recapitulating the development of T-ALL have demonstrated that PTEN abnormalities are at the hub of an intricate oncogenic network sustaining and driving leukemia development by activating several signaling cascades associated with drug-resistance and poor outcome. These aspects and their possible therapeutic implications are highlighted in this review

    mTOR Cross-Talk in Cancer and Potential for Combination Therapy.

    Get PDF
    The mammalian Target of Rapamycin (mTOR) pathway plays an essential role in sensing and integrating a variety of exogenous cues to regulate cellular growth and metabolism, in both physiological and pathological conditions. mTOR functions through two functionally and structurally distinct multi-component complexes, mTORC1 and mTORC2, which interact with each other and with several elements of other signaling pathways. In the past few years, many new insights into mTOR function and regulation have been gained and extensive genetic and pharmacological studies in mice have enhanced our understanding of how mTOR dysfunction contributes to several diseases, including cancer. Single-agent mTOR targeting, mostly using rapalogs, has so far met limited clinical success; however, due to the extensive cross-talk between mTOR and other pathways, combined approaches are the most promising avenues to improve clinical efficacy of available therapeutics and overcome drug resistance. This review provides a brief and up-to-date narrative on the regulation of mTOR function, the relative contributions of mTORC1 and mTORC2 complexes to cancer development and progression, and prospects for mTOR inhibition as a therapeutic strategy

    PO-502 A potential role for HSP90 in HER2-driven breast cancer (BC)

    Get PDF
    Introduction HER2 (amplified in 30% of BC) is involved in the activation of many pathways and its function is regulated by HSP90. Thus, HSP90 co-targeting is emerging as a potential molecular target for HER2-directed BC therapy. Material and methods We analysed HER2 and HSP90 expression in a panel of BC cell lines, including MCF7 cells stably transfected with a constitutively active HER2. HER2/HSP90 expression and growth inhibition were monitored over time upon exposure to trastuzumab (T) and docetaxel (D), in the presence or absence of HSP90 silencing. We also retrospectively evaluated a series of 24 locally advanced/operable BC patients (pts) who underwent neoadjuvant T+D for HSP90 expression and correlated it with pathological complete response (pCR). Results and discussions In the BC cell lines analysed there was no clear-cut correlation between HSP90 and HER2 expression. HER2 transfection into MCF7 cells increased HSP90 mRNA and protein expression; however, treatment with T further increased HSP90 levels. Conversely D increased HER2, but did not affect HSP90, expression. In HER2 +BC cell lines, simultaneous T+D combination resulted in synergistic growth inhibition in vitro , while their staggered combination, particularly T followed by D, did not afford synergistic effects. Effects of simultaneous and staggered treatments on HSP90 and HER2 expression were analysed by WB: HER2 expression decreased in the simultaneous and staggered combination (D followed by T), while HSP90 expression did not change upon combined treatment. The effects of HSP90 silencing and overexepression on functional response to T+D are being analysed in HER2 +BC models: preliminary results indicate that HSP90 silencing in HER2 +BC decreases the therapeutic synergism of the simultaneous T+D combination. Accordingly, in locally advanced/operable pts undergoing neoadjuvant T+D, pCR occurred more frequently in pts with a baseline HSP90 score of 3+, as compared to 2+and 1+ (50.0% vs. 14.3% vs. none, p=0.05). These results suggest the possibility to classify HER2-positive pts into HSP90 defined subgroups and elaborate specific therapeutic strategies. Conclusion Preclinical data indicate that constitutive HER2 activation induces HSP90 expression and HSP90 modulation influences the functional response to combined treatment. Baseline HSP90 expression may potentially represent a pre-requisite of pharmacological response in HER2-addicted BC

    rasterdiv ‐ an Information Theory tailored R package for measuring ecosystem heterogeneity from space: to the origin and back

    Get PDF
    Ecosystem heterogeneity has been widely recognized as a key ecological indicator of several ecological functions, diversity patterns and change, metapopulation dynamics, population connectivity or gene flow. In this paper, we present a new R package—rasterdiv—to calculate heterogeneity indices based on remotely sensed data. We also provide an ecological application at the landscape scale and demonstrate its power in revealing potentially hidden heterogeneity patterns. The rasterdiv package allows calculating multiple indices, robustly rooted in Information Theory, and based on reproducible open-source algorithms

    One year after on Tyrrhenian coasts: The ban of cotton buds does not reduce their dominance in beach litter composition

    Get PDF
    In January 2019, Italy banned the sale of plastic cotton buds, which is one of the most abundant litter items entering the sea and then washing ashore. However, since the ban came into force, no studies have been carried out to assess whether the measure has actually led to the reduction of plastic cotton buds accumulating on Italian coasts. Here we aim at evaluating the effectiveness of the ban in reducing the amount of cotton buds reaching sandy beaches of the Tyrrhenian coast. Specifically, we monitored the accumulation of beach litter for one year since the ban came into force. By surveying eight coastal sites from winter 2019 to winter 2020, we collected a total of 52,824 items mostly constituted by plastic debris (97.6%). We found that cotton buds were the most abundant item (42.3% of total litter), followed by plastic (28.5%) and polystyrene (5.43%) fragments. Our preliminary assessment suggests that the ban has so far not led to a sensible reduction in the amount of cotton buds entering the marine ecosystem. This was to be expected since implementation strategies are still lacking (i.e. no economic sanctions can be imposed in case of non-compliance) and bans are differently implemented among countries facing the Mediterranean Sea, calling for law enforcement and implementation at the national and international levels

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean = 3.0 \ub1 2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 \ub1 2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7 \ub1 2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore